3.304 \(\int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=122 \[ \frac{i a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sec (c+d x)}{\sqrt{2} \sqrt{a+i a \tan (c+d x)}}\right )}{2 \sqrt{2} d}-\frac{i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}-\frac{i a \cos (c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d} \]

[Out]

((I/2)*a^(3/2)*ArcTanh[(Sqrt[a]*Sec[c + d*x])/(Sqrt[2]*Sqrt[a + I*a*Tan[c + d*x]])])/(Sqrt[2]*d) - ((I/2)*a*Co
s[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])/d - ((I/3)*Cos[c + d*x]^3*(a + I*a*Tan[c + d*x])^(3/2))/d

________________________________________________________________________________________

Rubi [A]  time = 0.149419, antiderivative size = 122, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {3490, 3489, 206} \[ \frac{i a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sec (c+d x)}{\sqrt{2} \sqrt{a+i a \tan (c+d x)}}\right )}{2 \sqrt{2} d}-\frac{i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}-\frac{i a \cos (c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^3*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((I/2)*a^(3/2)*ArcTanh[(Sqrt[a]*Sec[c + d*x])/(Sqrt[2]*Sqrt[a + I*a*Tan[c + d*x]])])/(Sqrt[2]*d) - ((I/2)*a*Co
s[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])/d - ((I/3)*Cos[c + d*x]^3*(a + I*a*Tan[c + d*x])^(3/2))/d

Rule 3490

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(d
*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n)/(a*f*m), x] + Dist[a/(2*d^2), Int[(d*Sec[e + f*x])^(m + 2)*(a + b*Tan
[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && EqQ[m/2 + n, 0] && GtQ[n, 0]

Rule 3489

Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-2*a)/(b*f), Subst[
Int[1/(2 - a*x^2), x], x, Sec[e + f*x]/Sqrt[a + b*Tan[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 + b^
2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx &=-\frac{i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}+\frac{1}{2} a \int \cos (c+d x) \sqrt{a+i a \tan (c+d x)} \, dx\\ &=-\frac{i a \cos (c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}-\frac{i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}+\frac{1}{4} a^2 \int \frac{\sec (c+d x)}{\sqrt{a+i a \tan (c+d x)}} \, dx\\ &=-\frac{i a \cos (c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}-\frac{i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}+\frac{\left (i a^2\right ) \operatorname{Subst}\left (\int \frac{1}{2-a x^2} \, dx,x,\frac{\sec (c+d x)}{\sqrt{a+i a \tan (c+d x)}}\right )}{2 d}\\ &=\frac{i a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sec (c+d x)}{\sqrt{2} \sqrt{a+i a \tan (c+d x)}}\right )}{2 \sqrt{2} d}-\frac{i a \cos (c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}-\frac{i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.881703, size = 101, normalized size = 0.83 \[ -\frac{i a e^{-i (c+d x)} \left (5 e^{2 i (c+d x)}+e^{4 i (c+d x)}-3 \sqrt{1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\sqrt{1+e^{2 i (c+d x)}}\right )+4\right ) \sqrt{a+i a \tan (c+d x)}}{12 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^3*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((-I/12)*a*(4 + 5*E^((2*I)*(c + d*x)) + E^((4*I)*(c + d*x)) - 3*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[1 +
 E^((2*I)*(c + d*x))]])*Sqrt[a + I*a*Tan[c + d*x]])/(d*E^(I*(c + d*x)))

________________________________________________________________________________________

Maple [B]  time = 0.36, size = 570, normalized size = 4.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^3*(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

1/48/d*a*(-3*I*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*s
in(d*x+c)/cos(d*x+c))*2^(1/2)*sin(d*x+c)*cos(d*x+c)^2+3*2^(1/2)*arctan(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+
1))^(1/2))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*cos(d*x+c)^2*sin(d*x+c)-6*I*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/
2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*2^(1/2)*sin(d*x+c)*cos(d*x+
c)+6*2^(1/2)*arctan(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*cos
(d*x+c)*sin(d*x+c)-3*I*2^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))
*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*sin(d*x+c)+3*2^(1/2)*arctan(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(
1/2))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*sin(d*x+c)-32*I*cos(d*x+c)^6+32*cos(d*x+c)^5*sin(d*x+c)+16*I*cos(d*
x+c)^5-16*sin(d*x+c)*cos(d*x+c)^4-8*I*cos(d*x+c)^4+24*cos(d*x+c)^3*sin(d*x+c)+24*I*cos(d*x+c)^3)*(a*(I*sin(d*x
+c)+cos(d*x+c))/cos(d*x+c))^(1/2)/(I*sin(d*x+c)+cos(d*x+c)-1)/cos(d*x+c)^2

________________________________________________________________________________________

Maxima [B]  time = 2.21607, size = 1192, normalized size = 9.77 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

-1/48*(4*(I*sqrt(2)*a*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - sqrt(2)*a*sin(3/2*arctan2(sin
(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4
)*sqrt(a) + 12*(I*sqrt(2)*a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - sqrt(2)*a*sin(1/2*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1
)^(1/4)*sqrt(a) + (6*sqrt(2)*a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4
)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2
*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) - 6*sqrt(2)*a*arctan2((co
s(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*
d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin
(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1) - 3*I*sqrt(2)*a*log(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +
2*cos(2*d*x + 2*c) + 1)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + sqrt(cos(2*d*x + 2*c)^2 +
 sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + 2*(
cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c) + 1)) + 1) + 3*I*sqrt(2)*a*log(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c)
+ 1)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2
 + 2*cos(2*d*x + 2*c) + 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 - 2*(cos(2*d*x + 2*c)^2
+ sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))
+ 1))*sqrt(a))/d

________________________________________________________________________________________

Fricas [B]  time = 2.37164, size = 764, normalized size = 6.26 \begin{align*} -\frac{{\left (3 \, \sqrt{\frac{1}{2}} \sqrt{-\frac{a^{3}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )} \log \left (\frac{{\left (2 i \, \sqrt{\frac{1}{2}} \sqrt{-\frac{a^{3}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )} + \sqrt{2}{\left (a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{a}\right ) - 3 \, \sqrt{\frac{1}{2}} \sqrt{-\frac{a^{3}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )} \log \left (\frac{{\left (-2 i \, \sqrt{\frac{1}{2}} \sqrt{-\frac{a^{3}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )} + \sqrt{2}{\left (a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{a}\right ) - \sqrt{2}{\left (-i \, a e^{\left (4 i \, d x + 4 i \, c\right )} - 5 i \, a e^{\left (2 i \, d x + 2 i \, c\right )} - 4 i \, a\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{12 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/12*(3*sqrt(1/2)*sqrt(-a^3/d^2)*d*e^(I*d*x + I*c)*log((2*I*sqrt(1/2)*sqrt(-a^3/d^2)*d*e^(I*d*x + I*c) + sqrt
(2)*(a*e^(2*I*d*x + 2*I*c) + a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a) - 3*sqr
t(1/2)*sqrt(-a^3/d^2)*d*e^(I*d*x + I*c)*log((-2*I*sqrt(1/2)*sqrt(-a^3/d^2)*d*e^(I*d*x + I*c) + sqrt(2)*(a*e^(2
*I*d*x + 2*I*c) + a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a) - sqrt(2)*(-I*a*e^
(4*I*d*x + 4*I*c) - 5*I*a*e^(2*I*d*x + 2*I*c) - 4*I*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c))*e^(-
I*d*x - I*c)/d

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**3*(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \cos \left (d x + c\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(3/2)*cos(d*x + c)^3, x)